Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815465

RESUMO

Insectivorous bats at northern latitudes need to cope with long periods of no food for large parts of the year. Hence, bats which are resident at northern latitudes throughout the year will need to undergo a long hibernation season and a short reproductive season where foraging time is limited by extended daylight periods. Eptesicus nilssonii is the northernmost occurring bat species worldwide and hibernates locally when ambient temperatures (Ta) limit prey availability. Therefore, we investigated the energy spent maintaining normothermy at different Ta, as well as how much bats limit energy expenditure while in torpor. We found that, despite being exposed to Ta as low as 1.1°C, bats did not increase torpid metabolic rate, thus indicating that E. nilssonii can survive and hibernate at low ambient temperatures. Furthermore, we found a lower critical temperature (Tlc) of 27.8°C, which is lower than in most other vespertilionid bats, and we found no indication of any metabolic response to Ta up to 37.1°C. Interestingly, carbon dioxide production increased with increasing Ta above the Tlc, presumably caused by a release of retained CO2 in bats that remained in torpor for longer and aroused at Ta above the Tlc. Our results indicate that E. nilssonii can thermoconform at near-freezing Ta, and hence maintain longer torpor bouts with limited energy expenditure, yet also cope with high Ta when sun exposed in roosts during long summer days. These physiological traits are likely to enable the species to cope with ongoing and predicted climate change.


Assuntos
Quirópteros , Hibernação , Torpor , Animais , Temperatura , Quirópteros/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Hibernação/fisiologia , Metabolismo Energético/fisiologia
2.
J Anim Ecol ; 92(10): 2078-2093, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661664

RESUMO

Strong seasonality at high latitudes represents a major challenge for many endotherms as they must balance survival and reproduction in an environment that varies widely in food availability and temperature. To avoid energetic mismatches caused by limited foraging time and stochastic weather conditions, bats employ the energy-saving state of torpor during summer to save accumulated energy reserves. However, at high-latitude small-bats-in-summer face a particular challenge: as nocturnal foragers, they rely on the darkness at night to avoid predators and/or interspecific competition, but live in an environment with short, light summer nights, and even a lack of true night at the northernmost distributions of some bat species. To predict optimal behaviour in relation to latitudinal variation in diurnal cycles, we constructed a stochastic dynamic programming model of bats living at high latitudes. Using a stochastic dynamic programming framework with values that are representative for our study system, we show that individual energetic reserves are a strong driver of daytime use of torpor and night-time foraging behaviour alike, with these linked effects being both temperature- and photoperiod-dependent. We further used the model to predict survival probabilities at five locations across a latitudinal gradient (60.1° N to 70.9° N), finding that combinations of photoperiod and temperature conditions limited population distributions in the model. To verify our model results, we compared predictions for optimal decisions with our own empirical data collected on northern bats (Eptesicus nilssonii) from two latitudes in Norway. The similarities between our predictions and observations provide strong evidence that this model framework incorporates the most important drivers of diurnal decision-making in bat physiology and behaviour. Comparing empirical data and model predictions also revealed that bats facing lighter night conditions further north restrict their mass gain, which strengthens the hypothesis that predation threat is a main driver of bat nocturnality. Our model findings regarding state-dependent decisions in bats should contribute to the understanding of how bats cope with the summer challenges at high latitudes.


Assuntos
Quirópteros , Animais , Quirópteros/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura , Noruega , Metabolismo Energético/fisiologia
3.
Integr Comp Biol ; 63(5): 1049-1059, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37328423

RESUMO

Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.


Assuntos
Torpor , Animais , Torpor/fisiologia , Mamíferos , Estações do Ano , Ecossistema , Regulação da Temperatura Corporal
4.
Environ Pollut ; 333: 122092, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348695

RESUMO

To assess the impact of increasing pollutant levels on wildlife, we measured chemical contaminant loads in bats with different habitat and dietary preferences. Samples were taken from the fur of bats (Eptesicus nilssonii, Myotis brandtii, Myotis mystacinus and Plecotus auritus) to measure concentrations of 55 elements by inductively coupled plasma mass spectrometry (ICP-MS). Variations in element concentrations between different bat groups (species, sex, reproductive status) were analysed with a focus on arsenic (As), mercury (Hg) and lead (Pb) as these are known to cause specific health concerns in wildlife. For M. brandtii we found the highest As concentrations, especially in lactating bats, with a maximum exceeding those from other studies where bats had compromised health. Whereas for M. mystacinus there was a negative correlation between body condition index (BCI) and As concentration, indicating a potential danger for bats in the study area. In M. mystacinus and M. brandtii Hg concentrations were higher for sixteen individuals than in other studies where bats suffered genotoxic effects, although median levels were still below this threshold. Lactating bats from P. auritus and M. brandtii had higher Hg concentrations than bats of other reproductive status, which could endanger offspring as Hg can be transferred through lactation. In females from M. mystacinus Pb concentrations were more than three times higher compared to males. There was also a negative correlation between Pb concentration and BCI, which could mean that Pb has an adverse effect on health. Although many other biotic and abiotic factors should be considered, some of the variations in element concentrations could be due to different behaviours (foraging, roosting, etc.) in the studied species. The high levels of chemical contamination in some of the bats in our study, particularly reproductive individuals, is of conservation concern as bats are important agents for insect control.


Assuntos
Arsênio , Quirópteros , Poluentes Ambientais , Mercúrio , Humanos , Masculino , Feminino , Animais , Lactação , Chumbo , Reprodução
5.
Sci Data ; 10(1): 253, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137926

RESUMO

Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBaTrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBaTrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. The dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.


Assuntos
Quirópteros , Animais , Biodiversidade , Quirópteros/fisiologia , Ecossistema , Europa (Continente) , Mamíferos
6.
J Evol Biol ; 36(4): 650-662, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811205

RESUMO

An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb ) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed 'common garden' population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb , but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.


Assuntos
Animais Selvagens , Metabolismo Basal , Animais , Aves , Fenótipo
7.
J Therm Biol ; 111: 103396, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585072

RESUMO

Technological innovations have made heat-sensitive data-loggers smaller, more efficient and less expensive, which has led to a growing body of literature that measures the skin- or body temperatures of small animals in their natural environments. Studies of this type on heterothermic endotherms have prompted much debate regarding how to best define 'torpor' expressions from skin- or body temperature data alone. We propose a new quantitative method for defining torpor 'entries', 'arousals' and 'stable torpor periods' whilst comparing the results to 'torpor bout' durations identified using only the torpor cut-off method. By decomposing a torpor bout into 'entries', 'stable torpor periods', and 'active arousals', we avoid biases introduced by using strict threshold temperature values for the onset of torpor, thereby allowing better insight into individual use of torpor. We present our method as an easy-to-use function written in R-code, offering an un-biased and consistent methodology to be applied on skin- or body temperature measurements across datasets and research groups. When testing the function on a large dataset of skin temperature data collected on three bat species in Norway (Plecotus auritus: Nind = 39; Eptesicus nilssonii: Nind = 11; Myotis brandtii: Nind = 10), we identified 461 complete torpor bouts across species. More than 40% of the torpor bouts (Nbouts = 192) did not contain stable torpor periods, because the bats aroused before they had reached a stable skin temperature level. Furthermore, only considering 'torpid' and 'euthermic' temperature values by applying strict cut-off thresholds led to potentially large underestimations of torpor bout durations compared to our quantitative determination of the onset and termination of each torpor bout. We highlight the importance of differentiating between torpor phases, especially for active arousals that can be very energetically expensive and may alter our evaluation of the actual energetic savings gained by an individual employing torpor.


Assuntos
Quirópteros , Hibernação , Torpor , Animais , Temperatura Corporal , Temperatura , Temperatura Cutânea , Regulação da Temperatura Corporal
8.
J Mammal ; 103(4): 826-834, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110387

RESUMO

Insectivorous bats are particularly susceptible to heat loss due to their relatively large surface area to volume ratio. Therefore, to maintain a high normothermic body temperature, bats require large amounts of energy for thermoregulation. This can be energetically challenging for small bats during cold periods as heat loss is augmented and insect prey is reduced. To conserve energy many bats enter a state of torpor characterized by a controlled reduction of metabolism and body temperature in combination with selecting roosts based upon thermal properties. Our study aimed to quantify torpor patterns and roost preferences of free-ranging little forest bats (Vespadelus vulturnus) during winter to identify physiological and behavioral mechanisms used by this species for survival of the cold season. All bats captured were male (body mass 4.9 ± 0.7 g, n = 6) and used torpor on every day monitored, with bouts lasting up to 187.58 h (mean = 35.5 ± 36.7 h, n = 6, total number of samples [N] = 61). Torpor bout duration was significantly correlated with daily minimum and maximum ambient temperature, mean skin temperature, insect mass, and body mass of individuals and the multiday torpor bouts recorded in the cold qualify as hibernation. The lowest skin temperature recorded was 5.2°C, which corresponded to the lowest ambient temperature measurement of -5.8°C. Most bats chose tall, large, live Eucalyptus trees for roosting and to leave their roost for foraging on warmer days. Many individuals often switched roosts (every 3-5 days) and movements increased as spring approached (every 1-2 days). Our data suggest that V. vulturnus are capable of using the environmental temperature to gauge potential foraging opportunities and as a cue to reenter torpor when conditions are unsuitable. Importantly, frequent use of torpor and appropriate roost selection form key roles in the winter survival of these tiny bats.

9.
J Comp Physiol B ; 192(6): 815-827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35972527

RESUMO

To cope with periods of low food availability and unsuitable environmental conditions (e.g., short photoperiod or challenging weather), many heterothermic mammals can readily go into torpor to save energy. However, torpor also entails several potential costs, and quantitative energetics can, therefore, be influenced by the individual state, such as available energy reserves. We studied the thermal energetics of brown long-eared bats (Plecotus auritus) in the northern part of its distributional range, including torpor entry, thermoregulatory ability during torpor and how they responded metabolically to an increasing ambient temperature (Ta) during arousal from torpor. Torpor entry occurred later in bats with higher body mass (Mb). During torpor, only 10 out of 21 bats increased oxygen consumption (V̇O2) to a greater extent above the mean torpor metabolic rates (TMR) when exposed to low Ta. The slope of the torpid thermoregulatory curve was shallower than that of resting metabolic rate (RMR) during normothermic conditions, indicating a higher thermal insulation during torpor. During exposure to an increasing Ta, all bats increased metabolic rate exponentially, but the bats with higher Mb aroused at a lower Ta than those with lower Mb. In bats with low Mb, arousal was postponed to an Ta above the lower critical temperature of the thermoneutral zone. Our results demonstrate that physiological traits, which are often considered fixed, can be more flexible than previously assumed and vary with individual state. Thus, future studies of thermal physiology should to a greater extent take individual state-dependent effects into account.


Assuntos
Quirópteros , Torpor , Animais , Nível de Alerta , Regulação da Temperatura Corporal , Quirópteros/fisiologia , Metabolismo Energético/fisiologia
10.
Physiol Biochem Zool ; 95(4): 326-339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622440

RESUMO

AbstractAlthough heterothermy is employed by species at a global level within the order of Chiroptera (bats), the possibility of torpor being expressed in bat species inhabiting warmer climate zones has been explored only in the past couple decades. Recent studies suggest that the benefit of expressing torpor is not limited to saving energy during cold exposure or food shortage but may be just as important for saving water during heat waves. Thus, even if the physiological challenges faced by bats may depend on the habitat they live in, species expressing torpor should be found in any climate zone where employing torpor may yield benefits and increase their survival probability. Here, we summarize available data on torpor metabolic rates and daily skin temperature patterns of bats across climate zones, emphasizing similarities found in the data. We also present data that we have collected from a southern subtropical species (Nyctophilus bifax) and a northern subarctic species (Plecotus auritus) to illustrate specific examples of torpor expressions in two bat species living in highly different environments. Our findings highlight that torpor metabolic rates and skin temperature patterns of bats outside of the hibernation season can be universal across vastly different habitats, although arid environments indicate potential divergence in mean minimum torpor metabolic rates compared with measurements of populations inhabiting other climate zones.


Assuntos
Quirópteros , Hibernação , Torpor , Animais , Regulação da Temperatura Corporal/fisiologia , Quirópteros/fisiologia , Hibernação/fisiologia , Temperatura Cutânea
11.
Biol Rev Camb Philos Soc ; 97(4): 1539-1558, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35320881

RESUMO

Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator-prey interactions is fragmented and has not been synthesised. Here, we review and synthesise knowledge of how fire influences predator and prey behaviour and interactions. We develop a conceptual model based on predator-prey theory and empirical examples to address four key questions: (i) how and why do predators respond to fire; (ii) how and why does prey vulnerability change post-fire; (iii) what mechanisms do prey use to reduce predation risk post-fire; and (iv) what are the outcomes of predator-fire interactions for prey populations? We then discuss these findings in the context of wildlife conservation and ecosystem management before outlining priorities for future research. Fire-induced changes in vegetation structure, resource availability, and animal behaviour influence predator-prey encounter rates, the amount of time prey are vulnerable during an encounter, and the conditional probability of prey death given an encounter. How a predator responds to fire depends on fire characteristics (e.g. season, severity), their hunting behaviour (ambush or pursuit predator), movement behaviour, territoriality, and intra-guild dynamics. Prey species that rely on habitat structure for avoiding predation often experience increased predation rates and lower survival in recently burnt areas. By contrast, some prey species benefit from the opening up of habitat after fire because it makes it easier to detect predators and to modify their behaviour appropriately. Reduced prey body condition after fire can increase predation risk either through impaired ability to escape predators, or increased need to forage in risky areas due to being energetically stressed. To reduce risk of predation in the post-fire environment, prey may change their habitat use, increase sheltering behaviour, change their movement behaviour, or use camouflage through cryptic colouring and background matching. Field experiments and population viability modelling show instances where fire either amplifies or does not amplify the impacts of predators on prey populations, and vice versa. In some instances, intense and sustained post-fire predation may lead to local extinctions of prey populations. Human disruption of fire regimes is impacting faunal communities, with consequences for predator and prey behaviour and population dynamics. Key areas for future research include: capturing data continuously before, during and after fires; teasing out the relative importance of changes in visibility and shelter availability in different contexts; documenting changes in acoustic and olfactory cues for both predators and prey; addressing taxonomic and geographic biases in the literature; and predicting and testing how changes in fire-regime characteristics reshape predator-prey interactions. Understanding and managing the consequences for predator-prey communities will be critical for effective ecosystem management and species conservation in this era of global change.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Comportamento Animal , Dinâmica Populacional , Comportamento Predatório
12.
Oecologia ; 197(1): 129-142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455495

RESUMO

Torpor is a well-known energy conservation strategy in many mammal and bird species. It is often employed when environmental conditions are unfavourable to maximize survival probabilities. However, torpor often carries with it the physiological costs of a low body temperature and of rewarming in addition to potential missed opportunities for foraging. Therefore, we hypothesised that decision making regarding when to use torpor should reflect the most important environmental conditions for species distributions, and thus how they may be impacted by ongoing climate change. We investigated how weather conditions affect nightly torpor patterns in the nocturnal insectivorous Australian eastern long-eared bat (Nyctophilus bifax). By measuring the skin temperature of 37 free-ranging individuals, we confirmed that torpor was used more frequently during the winter and at subtropical compared to tropical locations. Using mixed-effect models we show that lower ambient temperatures were the main driver of individual torpor use, probably due to lower roost temperatures and prey availability. However, increased rain, wind and humidity, and decreasing barometric pressure, as well as brighter moonlight, also led to more time spent torpid per night. We suggest that bats evaluate multiple environmental cues to make decisions regarding torpor use versus active foraging based upon their expectations of the energetic benefits, prey availability and relative predation risk. Interactions between some of these effects and body mass (whilst controlling for forearm length) indicate that individual variation in body size and/or state-dependent effects of energy reserves also partly determined the use of nightly torpor in these bats.


Assuntos
Quirópteros , Torpor , Animais , Austrália , Regulação da Temperatura Corporal , Metabolismo Energético , Humanos , Estações do Ano , Temperatura
13.
Biol Open ; 10(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338281

RESUMO

Bats inhabit a variety of climate types, ranging from tropical to temperate zones, and environmental differences may therefore affect the basal metabolic rate (BMR) of bats from different populations. In the present study, we provide novel data on the energetics of whiskered bats (Myotis mystacinus), which is the smallest species within Chiroptera measured to date. We investigated the thermoregulatory strategies of M. mystacinus close to the northern limits of this species' distribution range and compared these data to other vespertilionid bats living in different climates. As mammals living in colder areas experience elevated thermoregulatory costs, often leading to an increase in BMR, we hypothesised that BMR of this northern population of whiskered bats would be higher than that of bats from climates with warm environmental temperatures. From a systematic literature search we obtained BMR estimates (N=47) from 24 species within Vespertilionidae. Our metabolic measurements of M. mystacinus in Norway (body mass of 4.4 g; BMR of 1.48 ml O2 g-1 h-1) were not different from other vespertilionid bats, based on the allometric equation obtained from the systematic literature search. Further, there was no effect of environmental temperature on BMR within Vespertilionidae. How these tiny bats adapt metabolically to high latitude living is thus still an open question. Bats do have a suite of physiological strategies used to cope with the varying climates which they inhabit, and one possible factor could be that instead of adjusting BMR they could express more torpor. This article has an associated First Person interview with the first author of the paper.


Assuntos
Quirópteros/metabolismo , Metabolismo Energético , Adaptação Fisiológica , Animais , Metabolismo Basal , Regulação da Temperatura Corporal , Meio Ambiente , Modelos Teóricos , Especificidade da Espécie
14.
iScience ; 24(12): 103453, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34988391

RESUMO

To cope with the challenges presented by habitat degradation and loss, animals must often respond by adjusting physiological and behavioral mechanisms. Here we quantified physiological and behavioral traits, including body temperature and food consumption, of two mammals with differing thermoregulatory strategies in response to changes in climate and habitat. We show that both species responded to challenging climatic conditions by increasing torpor use to save energy, yet their responses were impacted by varying vegetation levels. Sugar gliders decreased torpor use in a dense habitat likely due to a signal of greater food production and protection from predators. Conversely, eastern pygmy possums employed more torpor perhaps to build up fat reserves in anticipation of leaner times. Indeed, in dense habitat eastern pygmy possums did not alter food intake yet showed an increase in body mass, whereas sugar gliders consumed less food and lost body mass, revealing the large energetic savings provided by torpor.

15.
Curr Zool ; 66(1): 15-20, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32467700

RESUMO

Energy conservation is paramount for small mammals because of their small size, large surface area to volume ratio, and the resultant high heat loss to the environment. To survive on limited food resources and to fuel their expensive metabolism during activity, many small mammals employ daily torpor to reduce energy expenditure during the rest phase. We hypothesized that a small terrestrial semelparous marsupial, the brown antechinus Antechinus stuartii, would maximize activity when foraging conditions were favorable to gain fat reserves before their intense breeding period, but would increase torpor use when conditions were poor to conserve these fat reserves. Female antechinus were trapped and implanted with small temperature-sensitive radio transmitters to record body temperature and to quantify torpor expression and activity patterns in the wild. Most antechinus used torpor at least once per day over the entire study period. Total daily torpor use increased and mean daily body temperature decreased significantly with a reduction in minimum ambient temperature. Interestingly, antechinus employed less torpor on days with more rain and decreasing barometric pressure. In contrast to torpor expression, activity was directly related to ambient temperature and inversely related to barometric pressure. Our results reveal that antechinus use a flexible combination of physiology and behavior that can be adjusted to manage their energy budget according to weather variables.

16.
Front Physiol ; 11: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116761

RESUMO

Climate change is likely to affect many mammalian phenotypes, yet little is known whether and how phenotypic plasticity is involved in responding to thermal challenges during mammalian development. We investigated the effect of continuous cold or warm exposure during development on morphological, behavioral, and functional variables of yellow-footed antechinus (Antechinus flavipes), a semelparous Australian marsupial mammal. Captive-bred young were exposed to two ambient temperatures (T a ), cold (17°C) or warm (25°C), once weaned. Treatments were reversed and metabolic rate (MR) measurements repeated after 2 months. We measured body mass weekly, activity continuously, and MRs over a range of T a once they were adults. Growth rate was similar in both groups, but was faster in males. Antechinus in the warm group were initially more active than the cold group and decreased activity when exposed to cold, whereas the cold group increased activity when exposed to warm. Interestingly, females changed their night-time activity when T a was changed, whereas males changed their daytime activity. MRs were originally lower in the warm group in comparison to the cold group for both sexes and increased slightly for females, but not for males, after being exposed to cold. After exposure to warm T a , the MRs of the cold group decreased significantly over the entire T a -range for both sexes. Our results reveal that temperatures experienced during development can influence behavioral and physiological traits in antechinus. Such phenotypic plasticity is vital for a species that within 1 year is dependent on a single breeding event and experiences a complete population turnover.

17.
Ecol Evol ; 9(21): 12020-12025, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832143

RESUMO

Macrophysiological analyses are useful to predict current and future range limits and improve our understanding of endotherm macroecology, but such analyses too often rely on oversimplifications of endothermic thermoregulatory and energetic physiology, which lessens their applicability. We detail some of the major issues with macrophysiological analyses based on the classic Scholander-Irving model of endotherm energetics in the hope that it will encourage other research teams to more appropriately integrate physiology into macroecological analyses.

18.
Conserv Physiol ; 7(1): coz073, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737272

RESUMO

In a changing climate, southern hemisphere mammals are predicted to face rising temperatures and aridity, resulting in food and water shortages, which may further challenge already constrained energetic demands. Especially semelparous mammals may be threatened because survival of the entire population depends on the success of a single breeding event. One of these species, the yellow-footed antechinus, Antechinus flavipes, a small, heterothermic marsupial mammal, commences reproduction during winter, when insect prey is limited and energetic constraints are high. We examined the inter-relations between thermal and foraging biology of free-ranging A. flavipes and examined whether they use torpor for energy conservation, despite the fact that reproduction and torpor are considered to be incompatible for many mammals. Females used torpor during the reproductive season, but patterns changed with reproductive status. Prior to breeding, females used frequent (86% of days), deep and long torpor that was more pronounced than any other reproductive group, including pre-mating males (64% of days). Pregnant females continued to use torpor, albeit torpor was less frequent (28% of days) and significantly shorter and shallower than before breeding. Parturient and lactating females did not express torpor. During the mating period, males reduced torpor use (24% of days). Pre-reproductive females and pre-mating males were the least active and may use torpor to minimize predator exposure and enhance fat deposition in anticipation of the energetic demands associated with impending mating, gestation and lactation. Reproductive females were most active and likely foraged and fed to promote growth and development of young. Our data show that A. flavipes are balancing energetic demands during the reproductive season by modifying torpor and activity patterns. As the timing of reproduction is fixed for this genus, it is probable that climate change will render these behavioural and physiological adaptations as inadequate and threaten this and other semelparous species.

19.
Curr Biol ; 29(5): R146-R147, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836079

RESUMO

Devastation of both natural and human habitats due to wildfires is becoming an increasingly prevalent global issue. Fire-adapted and fire-prone regions, such as California and parts of Australia, are experiencing more frequent and increasingly destructive wildfires, accompanied by longer wildfire seasons. Further, wildfires are becoming more commonplace in areas that historically do not regularly experience fire, causing an increased risk of habitat loss in less resilient ecosystems. The escalation of fire outbreaks is a result of several factors; however, at the forefront of these outbreaks is an increase in highly flammable dry vegetation due to sustained drought, a trend we will see growing in our changing climate. To mitigate the potentially detrimental outcomes of wildfires, it is imperative that we understand the response of ecosystems to fire not only from an ecological perspective, but also from a physiological perspective. Research focused on the physiological adaptations of organisms to environmental constraints caused by fire can give insight into how plants and animals respond to fire, on both short- and long-term scales. Importantly, this information needs to be adapted effectively into fire management plans to improve the recovery success of organisms after fire.


Assuntos
Mudança Climática , Secas , Invertebrados/fisiologia , Fenômenos Fisiológicos Vegetais , Vertebrados/fisiologia , Incêndios Florestais , Animais , Austrália , California , Conservação dos Recursos Naturais , Incêndios
20.
Glob Chang Biol ; 25(6): 1893-1894, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30779405

RESUMO

The capacity of organisms to acclimate will influence their ability to cope with ongoing global changes in thermal regimes. Here we highlight methodological issues associated with recent attempts to quantify variation in acclimation capacity among taxa and environments, and describe how these may introduce bias to conclusions. We then propose a measure of thermal acclimation capacity that more directly quantifies the process of acclimation. Future studies of variation in acclimation capacity should critically evaluate whether their chosen empirical metric accurately reflects the theoretical concept of acclimation.


Assuntos
Aclimatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...